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Abstract

A variety of models have been proposed for the study of synchronous

parallel computation. We review these models and study further some

prototype problems. Within a spectrum of shared memory models, we show

that loglog n is asymptotically optimal for n processors to merge two

sorted lists containing n elements.
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.1 Introduction: Wha i reasonable model?

A number of relatively diverse problems are often referred to under

the topic of "parallel computation". The viewpoint of this paper is

that of a "tightly coupled", synchronized (by a global clock) collection

of parallel processors, working together to solve a terminating computa-

tional problem. Such Rarag paarsor already exist and are used to

solve time consuming problems in a wide variety of areas including com-

putational physics, weather forecasting, etc. The current state of

hardware capabilities will facilitate the use of such parallel proces-

sors to many more applications as the speed and the number of processors

that can be tightly coupled increases dramatically.

Within this viewpoint, Preparata and Viullemin [7) distinguish two

broad categories. Namely, we can differentiate between those models

that are based on a fixed connection network of processors and those

that are based on the existence of global or shared memory. In the

former case, we assume that only graph theoretically adjacent processors

can communicate in a given step, and we usually assume that the network

is reasonably sparse; as examples, consider the shuffle-exchange network

(Stone [10]) and its development into the Ultracomputer of Schwartz [8],

the array or mesh connected processors such as the Illiac IV, the cube-

connected cycles of Preparata and Viullemin [7], or the more basic n-

dimensional hypercube studied in Valiant and Brebner [12]. As examples

of models based on shared memories, there are the PRAC of Angluin and

Valiant [1l, the PRAM of Fortune and Wyllie [2), the unnamed parallel

model of Shiloach and Vishkin [9], and the SIMDAG of Goldschlager [3].

Essentially these models differ in whether or not they allow fetch and

L , . .
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write conflicts, and if allowed, how write conflicts are resolved.

From a hardware point of view, fixed connection models seem more

reasonable and, indeed, the global memory-processor interconnection

would probably be realized in practice by a fixed connection network

(see Schwartz [8)). Furthermore, for a number of important problems

(ego FFT. bitonic merge, etc.) either the shuffle-exchange or the cube

connected cycles provide optimal hosts for well known algorithms. On

the other hand, many problems require only infrequent and irregular pro-

cessor communication, and in any case the shared memory framework seems

to provide a more convenient environment for constructing algorithms.

Finally, in defense of the PRAM, it is plausible to assume thac some

broadcast facilities could be made available.

The problem of sorting, and the related problem of routing are pro-

totype problems, due both to their intrinsic significance and their role

in processor communication. Since merging is a (the) key subroutine in

many sorting strategies, we are interested in merging and sorting with

respect to both the fixed connection and shared memory models. In a

companion paper, we study the routing problem for fixed connection net-

works, such as the n-dimensional cube. For such a machine, the complex-

ity of merging has been resolved by the fundamental log n algorithms of

Batcher (see Knuth [5) for a discussion of odd-even and bitonic merge).

The lower bound in this regard is immediate because log n is the graph

theoretic diameter. In this paper, we concentrate on the complexity of

merging (with application to sorting) on shared memory machines.

.. ............. ........ ...~~...... ......... .......... ................. .......... -' - "ll.. ... ..
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i A lierarchy L Mod1l

The shared memory models usually studied all possess a global

memory. each tZU of which can be read or written by any processor. For

the purpose of constructing algorithms, one usually assumes a single

instruction stream: that is. one program is executed by all processors.

However, when the processor number itself is used to control the

sequencing of steps, and some ability to synchronize control is intro-

duced, then the effect is that of a multiple instruction stream. The

processors are assumed to have some local memory and each processor can

execute basic primitive operations such as :5=, comparisons and integer

,-,x,* arithmetic operations in a single step. The following models

have been considered:

1. PRAC (Angluin and Valiant) - Simultaneous read or write (of the

same cell) is not allowed.

2. PRAM (Fortune and Wyllie) - Simultaneous fetches are allowed but no

simultaneous writes.

3. WRAM - WRAM denotes a variety of models that allow simultaneous

reads and (certain) writes, but differ in how such write conflicts

are to be resolved.

a. (Shiloach and Vishkin) a simultaneous write is allowed only if

all processors are trying to write the same thing, otherwise the

computation is not legal.

b. An arbitrary processor is allowed to write

c. (Goldschlager) the lowest numbered processor is allowed to

write.



Other variants are clearly possible. We are concerned with the

merging and sorting problems of elements from an arbitrary linear order

(i.e. the schematic or structured approach). In this context, a "most

powerful" parallel model (analagous to the comparison tree for sequen-

tial computation) has been studied by Valiant. The Rarallal cmpaion

tree idealizes k-processor parallelism by a 3k-tree where each node is

labelled by a set of k {<,=,>) comparisons and the branches are labelled

by each of the 3k possible outcomes. It should be clear that for the

problems of concern, parallel computation trees can simulate any reason-

able parallel model, and in particular, can simulate all of the

aforementioned shared memory models.

Let M denote any of these models. We will be concerned with T
M

merge

(n.m.p) and TM  (n.p), the minimum number of parallel steps to mergesort

two sorted lists of n and m elements (respectively, to sort n arbitrary

elements) using p processors. Typically, n--m, and p=O(n) or

O(n log a n). Clearly, for any problem we have

T P R A C k T P RA M  >: T RAM.

Our main contribution is to establish the following two theorems:

Theorem 1: Let M denote the parallel computation tree model. Then
TM  (nonsnOL) = n(loglog n) for a<2.
merge

Theorem 2: TPRA  (nnn) = O(loglog n).

merge

We use Valiant's algorithm, which already establishes the bound for

the parallel comparison tree, but following Valiant ll), Preparata [6]

and Shiloach and Vishkin [9J, remark that a "processor allocation" prob-

lem must be solved to realize Valiant's algorithm on the PRAM model.



Hence, the problem of merging is now resolved on all of the above shared

memory models except the PRAC, for which we cannot improve on the log n

upper bound of the Batcher merge. For the PRAC, it is not difficult to

show that N(\4logn) is a lower bound for insertion (and hence merging);

indeed we conjecture that insertion requires O(log n) on a PRAC.

With regard to sorting. we have the following direct corollaries:

Coolar ,: T PRAM (non) = O(log n logiog n).

PRAM

Corollary 2: TPR (non log n) = O(log n).

Clearly, Corollary 1 follows from a standard merge sort, whereas

Corollary 2 is a restatement of Preparata's [6) result, which can now be

stated for PRAM's using Theorem 2. Corollaries I and 2 should be com-

pared with the Shiloach and Vishkin upper bound of

O(lo-2 n + logn) for sorting on their version of a WRAM with p
log(p/n)

processors. With regard to lower bounds for sorting, Haagvist and Hell

[4) prove that in terms of the parallel computation tree, time less than

or equal to k implies (n 1+ /k ) processors are required (and this is

essentially sufficient). It follows, that for the tree model and any

of the RAM models, 0 (log n /log log n) is a lower bound for sorting

with £1(n loga n) processors. For O(n) processors, D(log n) is a trivial

lower bound resulting from the sequential lower bound of Q(n log n).

Among the open questions for parallel sorting are the following: the

number of processors for O(log n) time sorting on a PRAC (Preparata [6J

achieves O(k log n) time with n1+ 1/k processors); whether it is possible

to sort in time o(log n), and in particular in time 0(1), on a PRAC or

PRAM; whether it is possible to sort in time 0(l) on a WRAM using only

polynomial in n number of processors.
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IT. A 4(loglog n) lower bound for merging on Valiant's model

Sequentially merging two lists of length n can be accomplished with

2n-1 comparisons and this is provably optimal. Since only 2n-1 com-

parisons are necessary to merge two such lists, conceivably in a paral-

lel model they could be merged in time 0(1) with n processors. However,

we shall show that this is not possible. Even allowing na for a<1 com-

parisons per step. a depth of loglog n is needed.

Consider the process of merging two sorted lists a, . . . an and

b1 . . . * , bn with n processors. At the first step at most n comparis-

ons can be made. Partition each list into 2\ n blocks of length 2\1n.

Form pairs of blocks, one from each list. There are 4n such pairs of

blocks. Clearly there must be 3n pairs (Ai.B.) of blocks such that no

element from the block Ai is compared with any element from the block

B.. We shall show that we can select 2\In pairs of blocks

(Ai iBj)M(A 2B j2), . . . ,(A i  ,B. )

such that i <if+1 and jL<ji+i for 1<I< . If the total order is such

that all elements in A. uB. are less than any element in11 Ji

A. uB. ,l~l<\In, then after the first stage we are faced with '-n
11+1 j1+l 2 2-

subproblems each of size 2\1n.

At the second stage the n processors are partitioned somehow among

the 2\1n subproblems. However this is done, at least one half of the

subproblems have assigned to them fewer than twice the average available

number of processors per subproblem. Thus there are 4 \n subproblems

with at most 4\1n processors per problem. Intuitively this argument

suggests that at each stage the size of subproblem goes down by a square



root and hence loglog n time is necessary. These ideas will be made

precise in the following lemmas.

In what follows let G = (AuBE) be a bipartite graph with EcAxB.

Further let A1,A2 * . . and B,B 2, * • * be fixed ordeiings of the

vertices in A and B, respectively. A matching is said to be c

if for each pair of edges (AgBh) and (Ai,B j ) in the matching i<h if and

only if j<g.

LgmPm: Let G=(AuB,E) be a bipartite graph with A = A,A 2 , * • ,A2k and

B = B1 , B2 , * . ,B2k and let E r AxB have 3k2 edges. Then G has a com-

patible matching of cardirality at least k.

Proof: Partition the edges into 2k-i blocks as follows. For -k<b<k we

have a block consisting of edges ((Ai,B i+b)j1 i<2k and l-<i+b<2k}. In

addition we have one block consisting of all other edges. At most 2k2

edges fall into the block of other edges. Thus at least k2 edges must

be partitioned into 2k-I blocks. Hence at least one block must have at

least k edges and these edges form a compatible matching.

Lemma: Let T(sc) be the time necessary to solve k, k2l, problems of

size a with cks processors. Then T(sc) is W lo sc).
log c

Proof: On the average we can assign cs processors to each problem. At

least one half of the problems can have no more than twice this number

of processors assigned to them. That is, at least k/2 problems have at'

most 2cs processors.

Consider applying 2cs processors to a problem of size a. This

means that in the first step we can make at most 2cs comparisons. Par-

tition the lists into 2\12cs blocks each of size 2 2c There are 8cs

_~~~ 2cy__
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pairs of blocks. Thus there must be 6cs pairs of blocks with no com-

parisons between elements of the blocks in a pair. Construct a bipar-

tite graph whose vertices are the blocks from the two lists with an edge

between two blocks if there are no comparisons between elements of the

two blocks. Clearly there are 6cs edges and thus by the previous lemma

there is a compatible match of size at least 2AF2cs. This means that

there are at least 2\f2cs problems each of size at least 2 that we

must still solve. Thus T(sc) k 1+T(

We show by induction on s, that

T(s,c) 2 dlo Ing sr
glog C

for some sufficiently small d.

1 'g~I4c.

T(s,c) k 1+dlog log4c

k l+dlog 4+ logc

> l+dlog logc-dlog4

> dlog logc
logc

provided d< 2 . Observe that log c is D(loglog s - loglog c) which

matches Valiant's upper bound of 2(loglog s - loglog c).

iU An oIi(Inelg U) Up= bound fgX mex..ing nU a PRA±

We recall Valiant's (nm) merging algorithm which merges X and Y

with fX=n, #Y=m. nm using \[nm processors. Our goal is to implement

Valiant's algorithm on a PRAM. The algorithm (taken verbatim from Vali-

ant [11)) proceeds as follows:
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(a) Mark the elements of X that are subscripted by i Fr\nl and those

of Y subscripted by i'[\fml for i =12, . • . There are at

most L\JnJ and L\jmJ of these, respectively. The sublists between

successive marked elements and after the last marked element in

each list we call s .

(b) Compare each marked element of X with each marked element of Y.

This requires no more than L\InmJ comparisons and can be done in

unit time.

(c) The comparisons of (b) will decide for each marked element the seg-

ment of the other list into which it needs to be inserted. Now

compare each marked element of X with every element of the segment

of Y that has thus been found for it. This requires at most

L\fnJ • (r\Im7 - 1) < L\nmJ

comparisons altogether and can also be done in unit time.

On the completion of (a). (b) and (c) we can store each X in

ir\ni
its appropriate place in the output Z. It then remains to merge the

disjoint pairs of sublists (XoY 0).(XY I), • * • where the Xi and Yi

are segments of X and Y respectively. Whereas Chauchy's inequality

guarantees that there will be enough processors to carry out these

independent merges by simultaneous recursive calls of the algorithm, it

is not clear how to inform each processor to which (Xi,Yi ) subprogram

(and in what capacity) it will be assigned. This is the main concern in

what Shiloach and Vishkin [9] refer to as the 9Dn . allcatiQn prob-_

lea.
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We desire a recursive procedure (in fact, a macro might be more

appropriate) MERGE(i,n imjo m i ,k) which merges XiX i+l . . .• Xi+n

and Yj••. 'Yj+M into Z i , •j-1. . . aZi+ +n. m._2 using at most

3.

\Inimi processors beginning at processor number Such a merge will

be simultaneously invoked by processors Pk'Pk+l' ' -

k+ \I n m -1

The initial call is MERGE(ln,lom,l). As we enter this subroutine, a

processor Pk will know from isjoniom i, and k, the (relative) role it

plays in parts (a), (b) and (c) of Valiant's algorithm. For example,

say nI .9m. and let

I = k + i'[rni + j' OSi'<LL nIJ-i

05j' L- J - 1

then in step (a), processor p1 compares X __ and Y -Iit " n i+i j' " mi+ j

We will now indicate how processors reassign themselves before

recursively invoking the merge routine. For simplicity, assume that we

have just completed steps (a),(b),(c) of MERGE(l9nolm,l). We can

assume that we have determined for each i, 0<i L\fnJ-l that

Y __<X.:Y and that we have constructed a table Jjirm7 1 (ji+,)r\ 7i

0 Ji ...... -n -

accessible by all \Inm processors. A given processor p must determine

its role in the next iteration of the algorithm.

Lmma: Suppose (XoYo), . . . (Xr-lYr I  have been assigned proces-

sors, and Xr_ (...,XX .. ) and Yr-I ('.'"yf)" There exists a
r~n -
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function 4 such that no more than 4(rn,f) processors have been

assigned. Indeed. 4(r~n~f) = r. n1/4-, . (The bound rnl/4,IL is

achieved by considering the case Yi = f/r for all i < r.)

Proof: Cauchy's inequality will do the job here.

The impact of this Lemma is that we can safely assign processors

P4(r.n.f)+I' * * * '#P(r+1.n.f) to (Xr-Yr) It remains for each processor

to know to which (Xk.Yk) it will be assigned. Indeed, once a processor

knows to which (XkYk) it has been assigned. then it can obtain all the

information it will need to invoke MERGE from the table J and the 0

function; namely, Xk starts at kr\f1 and has length L\WnJ-l. Yk starts

at Y. and has length jk+l-Jk~l* and the processors assigned to this

task began at pi(k~ nJ

The actual assignment of a processor to a (XkYk) subproblem

proceeds in two stages (note that we cannot simply do a sequential

binary search in J because this would require log\1m steps):

Stage 1)

Processors are assigned for those (Xk.Yk) with #Yk5\1n (and hence

no more than \n processors need be assigned to this task since

Xi= n - I for all i.

Stage 2)

Processors are assigned to the remaining (XkYk).

StAPA 1: For each k, 0 < k5 \Im- 1, we assign \jn processors to look at

both the k and the k+lst entry of the table J. If jk+l-jk:\In. then

these \n processors inform (by posting the information in an appropri-
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ate place of global memory) processors numbered

d(k.n. Jkl)+l . . .ei(k+l,n, Jk) that they are assigned to (XkYk). We

then wait until the completion of Stage 2 before invoking merge on

(Xk.Yk) since all \Inm processors are needed for Stage 2.

Sage 2: The processors are divided into \Fm blocks, each block contain-

ing \[n processors. Each of the \In processors in a block are trying to

determine to which XkYk these \In processors will be assigned. Let Pj1

be the first processor of block 1. The kth processor of block 1 looks

at the jk and 3k+l in table J and determines (via the function 4)

whether or not processor pj would be assigned to this subproblem. Now
.1

each processor p in the Ith block can determine (again via table J and

) which of the following hold:

i) p is assigned to (XkYk), the subproblem assigned to p.

ii) p is assigned to (Xk ,Yk,)' the subproblem assigned to p1+1

iii) p has already been assigned in Stage 1.

We claim that if neither i) and ii) hold, then iii) must hold since

clearly less than \[n processors have been assigned to the same task as

p.

0

.YAnCA to In agrting and.= aproblms

Preparata [6] derives a set of parallel sorting algorithms, all

based on what Knuth [5] calls enumeration sorting. The "count acquisi-

tion stage" is often accomplished by merging. Using Batcher's merge,
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sorting can then be performed in O(k log n) steps on a PRAC using n 11/k

processors. More to the thrust of this paper, Preparata shows how

Valiant's merge can be used to derive a O(log n) time sort using n log n

processors. Since we have shown how to implement Valiant's merge on a

PRAM, Preparata's bounds will now be applicable to the PRAM model. It

is also clear that with only n processors, a merge sort will take O(log

n loglog n) time.

A number of open problems concerning time vs number of processors

are readily suggested by the above comments. We can classify two sets

of questions:

1) The number of processors required for an O(log n) time sort on the
1 +I/k

various models, the present upper bounds being n (PRAC), n log

n (PRAM, WRAM, parallel computation tree). In all cases, n proces-

sors is an obvious lower bound.

2) For what models is it possible to sort in o(log n) time and, if

possible, how many processors are required? In particular, in 0(0)

time, sorting can be done using 0 (2n) processors on a WRAM or in

1+1/k
constant time k using n processors on a parallel computation

tree. We do not know if such a fast sort is possible for the PRAC

or PRAM.
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